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In QFT I and I we have seen canonical quantization based

on nearly free lagrangians for particles of spin o and I

associated to scalons spinors and vector fields respectively
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Hilbert
space was

obtainedby diagonaliting a nearly harmonic Hamiltonian
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LINKThe two major change by working with 4 s and An
as opposed to scalar fields we have seen are

4 anticommute Fermionic oscillators
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In canonical quantization a la GuptaBleuler one has an enlarged Hilbertsp
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QuickReminder

phys is obtainedby projecting on subspece solving one
condition 4 03

and further reduced by identifying stateswithin 3 02

Explicitly in Feynman's gauge
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In the first few lectures we are going back to these fundamentals

abstracting from any Lagrangian perturbative formulation focusing
on the non perturbative role of symmetries QM



Hpestates

The strategy is identifying the relevant group of symmetry so

that the vector space where its unitaryand possiblyprojective irreps
act form thebuilding block for generic reducible states schematically
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which we remind satisfies 3 importantproperties
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Casimir Operators In I Wnw W

The irreps one labelled by Casimiroperators I that commute

with all group elements thanks to Schur'ssecond lemma
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as Massless Irreps 120 Pso
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can choose frame where ñ E E 89

WY I.EE by direct inspection plugging x ̅ in
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where we changed basis for future convenience
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p6There are therefore 2 subcases for m 0
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which are known as continuous
spin particles in the literature

often another basis is trio Ie a is where one diagon

simultaneously instead

states within irrep labelledby IHI eigenr HI Kd Atria
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We willnotstudy this case further Forrecentprogress on itsee2406.170171
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summery so far
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as General Poincaré irreps

We know how the irreps act on a particular subspece fixed K
momentum when it was a certain reference vector On the

other hand we can connect K belonging to the same

hyperboloid Mto or lightcone m01 by a Lorentz transformation
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so that under a generic
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Fields

Along with the Poincaré irreps above it's interesting to study the local

excitations produced by acting with local operators fields O x

on 105 and see their relation to the Poincaréirreps

Abstracting from the lagrangian formulation we are going to assume theAxioms

I Empty space exists and looks the same to all inertialobservers
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I Spectrum condition stability
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Comment I and I are not specific to field theory yet
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I can create local excitations and reproduce them around
44
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Remark Onetypically assumes a stronger condition remelly anystate can be

reached by inserting sufficiently manylocaloperators i e
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II Lorentz fields carry
Lorentz projective irreps
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a of This says that correlations dye
off at spacelike infinity

space In a sense is the statementthat
vacuum is notentangled



Remonk This basically implies vacuum is unique since
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we can consider the aptfunction
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Comment The 5 axiomsabove willbe further extended in future lectures

to include the existence of asymptotic
stateassociatedtoparticles

Wewillusecluster decomposition again in scattering theoryto desire 152

Lorentz 5212,41

Now that we have stated our assumptions we willstartderivinggeneral
universal results

by inspecting the relation
between fields states To thisgoal

however is convenient to recall how Lorentz redly Ka e irreps

are constructed by exponentiating the complexified Lie algebres
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Lorentz

algebra

forwhich a better complexified basis is
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Comment exponentiating the complexified sulata Sulz algebra we get
complexified 542,41 5494105441 To getjust SLK.at
one needs to exponentiate thealgebrawithsome restrictions on the
Lie parameters such that Jiand Ki willhave realcoefficients
Explicitly α Jitpiki Bill t ftp.i Ji 5 iI 3 I
so that 54241 is obtainedby Qi pi ER that is 34 5 i If
one enforces a different
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We also remind that the explicit homomorphism
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The irreps obtained by exponentiating suk nak 44

with or withoutrestrictions on lie parameters are thus identified

by a pair of halfinteger numbers
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Remarks

An p and ti β are related if At A At
carefull for complexified 542,41 they are not

This is consistentwith 28 because then we can raise lower

indices with the invariant tensors Eap E Esp
β
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Example 4 rector
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of left and right
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The 121 irrep is nothing but the 4 rector irrep
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since in general
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Remarks

QQ.sn in im notfully antisymmetric in a's and i's would

be reducible Kap Eβ to in thatcase and since β invarianttensor

there wouldbe a proper invariantsubspace tap pα
α Eap t.gr

Lorentz tensors are those for which 3 is integer I_ j integer
One can go to a manifest Lorentz index basis by contractingwithPauli

matrices e g for an antisymmetric Eno Fra

441 FvT of E Fap IF 1,01
4 En 11,01 10,11

5 Fmo T Fip Fp 10,11

ingeneralreducible can be
written Fap p EapEap FipEap



P LUPI
Parity exchanges left right since
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